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ABSTRACT

A series of papers published recently by the first author introduce a nonlinear filter that operates effectively

as a data assimilation method for large-scale geophysical applications. The method uses sequential Monte

Carlo techniques adopted by particle filters, which make no parametric assumptions for the underlying prior

and posterior error distributions. The filter also treats the underlying dynamical system as a set of loosely

coupled systems to effectively localize the effect observations have on posterior state estimates. This property

greatly reduces the number of particles—or ensemble members—required for its implementation. For these

reasons, the method is called the local particle filter. The current manuscript summarizes algorithmic ad-

vancesmade to the local particle filter following recent tests performed over a hierarchy of dynamical systems.

The revised filter uses modified vector weight calculations and probability mapping techniques from earlier

studies, and new strategies for improving filter stability in situations where state variables are observed in-

frequently with very accurate measurements. Numerical experiments performed on low-dimensional data

assimilation problems provide evidence that supports the theoretical benefits of the new improvements. As a

proof of concept, the revised particle filter is also tested on a high-dimensional application from a real-time

weather forecasting system at theNOAA/National Severe StormsLaboratory (NSSL). The proposed changes

have large implications for researchers applying the local particle filter for real applications, such as data

assimilation in numerical weather prediction models.

1. Introduction

The success of ensemble Kalman filters (EnKFs) in

oceanography, meteorology, and other fields of geo-

science has motivated recent efforts to develop more

general Monte Carlo filters for data assimilation. This

research includes advancing particle filters (PFs) for

geophysical models. Strategies for implementing these

filters in high-dimensional problems tend to fall into

one or more of the following categories: 1) filters that

manipulate the transition density between observation

times or use a carefully chosen proposal density to re-

duce the number of particles having low likelihood (van

Leeuwen 2010; Chorin et al. 2010); 2) filters that com-

bine PFs with EnKFs tomaintain the benefits of Kalman

filters for situations where Gaussian assumptions are

appropriate (e.g., Majda et al. 2014; Frei and Künsch
2013; Slivinski et al. 2015; Chustagulprom et al. 2016);

and 3) filters that break the data assimilation problem

into a set of independent problems via spatial localiza-

tion or other means (e.g., Bengtsson et al. 2003; Lei and

Bickel 2011; Poterjoy 2016, hereafter P16; Poterjoy and

Anderson 2016, hereafter PA16; Penny and Miyoshi 2016;
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Lee and Majda 2016). This research presents multiple

pathways for incorporating benefits of PFs into pre-

existing environmental modeling systems designed

for EnKFs. For example, Robert et al. (2018) success-

fully applied a localized ensemble transform Kalman

particle filter for data assimilation in the Consor-

tium for Small-Scale Modeling (COSMO) framework.

Recent work by the German Meteorological Office

testing a Markov Chain particle filter for numeri-

cal weather prediction have also been encouraging

(Potthast 2016).

The current study summarizes recent progress de-

veloping a localized sequential importance resam-

pling (SIR) PF for geophysical data assimilation. The

method, first introduced in P16 as the ‘‘local PF,’’ op-

erates by assimilating observations with independent

errors sequentially and combining sampled particles

and prior particles for each observation. The local

PF satisfies the SIR PF solution for state variables lo-

cated in close geographical proximity to observations

in the sequence, but maintains the prior particles for

state variables located far from observations. A smooth

correlation function that tapers to zero at a finite user-

specified distance controls the spatial influence obser-

vations have on posterior estimates, which greatly

reduces the number of particles needed for geophysical

data assimilation problems. Therefore, the resulting

filter falls into the third category of PFs described above.

An appealing aspect of the local PF is it transitions into

the SIR PF as the localization length scale approaches

infinity, which would be done with a very large number

of particles. Therefore, the local PF converges to the

Bayesian solution as the number of particles and local-

ization length scale increase.

Recent studies by PA16 and Poterjoy et al. (2017,

hereafter PSA17), demonstrate that the local PF op-

erates effectively for high-dimensional systems. In

PA16, the local PF provides accurate posterior re-

presentations of baroclinic Rossby waves over year-

long data assimilation experiments performed with

a simplified atmospheric general circulation model.

Following this work, PSA17 show benefits of the local

PF in an idealized (i.e., observing systems simulation

experiment) convective-scale ensemble analysis and

prediction system when compared to a conventional

EnKF system. These two studies find the local PF

to operate effectively using 25 and 100 particles, re-

spectively, which motivates recent applications for

real data assimilation problems. Experiments per-

formed during the course of this work, as well as on-

going efforts applying the local PF for the analysis and

prediction of severe convective storms using the exper-

imental ‘‘Warn-on-Forecast’’ prediction framework

(Wheatley et al. 2015; Jones et al. 2016) at NOAA’s

National Severe Storms Laboratory (NSSL), lead to

several important improvements relative to the filter

formulation outlined in P16. The purpose of this man-

uscript is to discuss obstacles encountered when apply-

ing the local PF for applications of increasing complexity

and summarize updates made to the filter formulation

outlined in P16.

The manuscript is organized in the following man-

ner. Section 2 introduces the SIR PF and the local PF.

Sections 3 and 4 provide several improvements for the

P16 formulation and filter stabilization techniques re-

quired for situations where localization alone cannot

prevent the collapse of particle weights. Section 5 presents

numerical experiments performedwith a low-ordermodel,

which justify the algorithmic improvements in sections 3

and 4. Section 6 shows results from a real weather fore-

casting example to demonstrate that the revised local PF

can operate effectively for a high-dimensional geophysical

application. The last section summarizes the main findings

of this study and discusses the potential of the revised filter

for real numerical weather prediction.

2. Sequential importance resampling and the local
particle filter

The data assimilation problem of interest considers

the probability of a system state x, represented as a

random vector of length Nx, conditioned on indepen-

dent noisy observations stored in y, a vector of length

Ny. For simplicity, assume x and y are valid at the same

time, thus allowing time indices to be ignored. Obser-

vations relate to x through

y5H[x]1 « , (1)

where H is a function that maps the model state to ob-

servation space and « is the observation error. From

Bayes’ theorem, the posterior density is proportional to the

product of the prior density and the likelihood of particles:

p(xjy)5 p(yjx)p(x)ð
p(yjx)p(x) dx

. (2)

Given Ne equally likely samples from p(x), the PF ap-

proximates this density with a sum of delta functions.

Consequentially, the posterior density is approximated

as a sum of weighted delta functions:

p(xjy)’ �
Ne

n51

w
n
d(x2 x

n
) . (3)

Here, the weights are proportional to the likelihood of

particles given observations:
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w
n
5

p(yjx
n
)

�
Ne

m51

p(yjx
m
)

. (4)

More efficient versions of this filter can be formulated

by drawing samples from a proposal distribution con-

ditioned on additional information, such as current

observations; see Doucet et al. (2001) for a review. The

local PF adopts the formulation of the SIR PF described

here, which uses the prior density as a proposal. Future

formulations of the local PF may include other choices

of proposal density, but the current configuration is

sufficient for describing important components of the

algorithm.

The weights in (4) can inform how to sample par-

ticles from p(xjy). In its simplest form, the SIR PF

duplicates particles with large weights and removes

particles with small weights (Gordon et al. 1993),

thus sampling most particles from regions where

the posterior probability is highest. After resam-

pling, all weights are set equal to 1/Ne before prop-

agating particles to the next time observations are

available.

The SIR PF is easy to implement and converges to

the Bayesian solution as Ne /‘, but the number of

particles required for its practical application in high-

dimensional systems is computationally prohibitive

(Bickel et al. 2008; Bengtsson et al. 2008; Snyder et al.

2008). Recent studies by Snyder et al. (2015) and

Slivinski and Snyder (2016) suggest limitations of the

SIR PF may also persist when particles are sampled

from the ‘‘optimal proposal’’ to reduce the Ne re-

quired for its stability. The optimal proposal refers

to the proposal density conditioned on the previous

model state during sequential data assimilation cy-

cles and the most recent observations (Doucet et al.

2000). For this reason, most current efforts for alle-

viating the dimensionality constraint of PFs focus on

spatial localization (see section 1 for examples). In

this context, localization refers to a filter construction

that limits the calculation of posterior quantities to

discrete regions of the state space, based on a priori

assumptions of the system dynamics and observing

system, and the degree of sampling error introduced

by applying Monte Carlo approximations of proba-

bilities. This strategy was first adopted by the atmo-

spheric science community to reduce the ensemble

size needed for EnKFs in global numerical weather

prediction models (Houtekamer and Mitchell 2001;

Hamill and Whitaker 2001). More recently, P16,

PA16, and PSA17 adopt a similar approach to apply

the SIR PF for comparable geophysical data assimi-

lation problems.

The filter introduced in P16 performs localization by

first expanding each scalar wn in (4) to vectors vn of

length Nx. Provided that observation errors are in-

dependent, which is often assumed for data assimi-

lation in geoscience, p(yjxn) factors into the product

P
Ny

i51p(yijxn). This factorization provides a straightfor-

ward means of constructing weights that reflect only

the local influence of observations on neighboring state

variables. P16 specifies the weights for each state vari-

able in x (denoted by index j) using the likelihood of

particles for each observation in y and a localization

function, l(yi, xj, rloc):

v
n,j
5P

Ny

i51

f[p(y
i
jx

n
)21]l(y

i
, x

j
, r

loc
)1 1g. (5)

Each vn is then normalized by V5�Ne

n51vn so all ele-

ments sum to one. For l(yi, xj, rloc), we choose a corre-

lation function introduced by Eq. (4.10) of Gaspari and

Cohn (1999), which is a continuous, smooth function

that has a maximum value of unity when the Euclidean

distance between yi and xj is zero, and tapers to zero

monotonically with distance at a rate controlled by the

coefficient rloc. With this function, the weights for each

state variable approach the scalar weights in (4) as

rloc /‘, yielding the original SIR PF weights. Using the

chosen localization function with a value of rloc much

larger than the model grid spacing helps produce con-

tinuity in the weighting vectors, which is beneficial for

most geophysical applications. This function also has

compact support, which allows for efficient paralleliza-

tion of the algorithm.

P16 presents a two-step process for generating pos-

terior samples that reflect the localized vector weights.

The first step resamples particles based on scalar

weights proportional to the likelihood of particles

for each observation in y, then merges sampled and

prior particles in a manner that satisfies the SIR PF

solution near the observation, and the posterior mean

and variance given by the localized weight equations

everywhere else in model space. The resampling

process occurs sequentially over all current observa-

tions, much like serial implementations of EnKFs

(Anderson 2001; Whitaker and Hamill 2002). As one

would assume, the process of localizing particle up-

dates follows a similar strategy. The second step

applies a nonparametric probability mapping algo-

rithm to make higher-order corrections to the particles.

We describe the details of both steps in section 3b and

encourage readers to review P16, which provides a

derivation for update equations, a schematic illustrat-

ing each part of the algorithm, and numerical experi-

ments demonstrating the impact of the probability
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mapping step. We also refer readers to section 3b of

PSA17, which provides two-dimensional examples

demonstrating how particles are updated within the

localization region, and how the solution differs from a

localized EnKF.

3. A revised local particle filter

Since its introduction in P16, the local PF has un-

dergone testing for data assimilation problems of

increasing complexity. These experiments range from

a simplified general circulation model in PA16 to

current testing using a regional convective-scale

weather prediction system at NSSL. The extended

use of this method motivates several changes to

the original algorithm, which we describe in this

section. To supplement our description, we also

provide a list of important symbols and definitions,

and a pseudocode local PF algorithm in appendixes A

and B, respectively.

a. Reformulation of vector weight equations

In this section, we describe circumstances that can

cause the local PF to become unstable. These situa-

tions typically occur when using small numbers of

particles to assimilate measurements that have error

variance much smaller than the prior variance – in

which case, it is unlikely any particles will yield large

likelihoods. We use numerical simulations to dem-

onstrate how the shape of vector weights depends

greatly on the sum of particle likelihoods, which be-

comes problematic when likelihoods are very small.

We then introduce a revised weight equation, which

avoids this problem by normalizing likelihoods before

introducing them in vector weight equations. Like the

P16 local PF, the revised filter converges to the SIR

PF as rloc becomes large. The modification, however,

changes how localization influences the shape of particle

weighting vectors.

To understand the effect of accurate observations

(i.e., those with low error compared to the prior) on

the shape of vector weight calculations, recall that

the set of vector weights calculated in (5) are nor-

malized by V to guarantee they sum to unity. For a

single observation y, the elements of V equal Ne out-

side the localization region, but approach �Ne

n51p(yjxn)
near the observation; that is, setting Ny 5 1 and tak-

ing the sum of (5) gives Vj 5 l(y, xj, rloc)�Ne

n51p(yjxn)1
[12 l(y, xj, rloc)]Ne. Therefore, both l(y, xj, rloc) and

�Ne

n51p(yjxn) determine the shape of each vn. For an

observation that produces large likelihoods for many

particles [i.e., large �Ne

n51p(yjxn)], the effect will be to

‘‘broaden’’ the spatial influence of the observation

compared to those that yield smaller likelihoods—by

decreasing the rate at which vector weights converge

from the nonlocalized solution to an equal-weights

solution. To demonstrate this property, we perform a

set of data assimilation experiments for a system of

dimensionNx 5 40, defined on a uniform 1D grid. The

test problem uses Ne 5 20 particles to assimilate a

single observation of the 20th state variable, assum-

ing «;N(0, s2
y). To examine how the shape of

weighting vectors depends on the sum of likelihoods,

we set the observation equal to the prior mean and

consider three different values for observation error

standard deviation: sy 5 1, sy 5 0:2, and sy 5 0:02. For

each experiment, we calculate the localized vectors

weights (one for each particle) and examine how

their shapes change with different observation error

standard deviation. These weights, plotted as red

lines in Figs. 1a–c, clearly demonstrate a shape de-

pendence on normalization. As the sum of likelihoods

becomes very small (Fig. 1c), the particles closest

to the observation obtain vector weights that ap-

proach delta functions. The rapid decrease in likeli-

hoods with decreasing sy follows from the use of an

FIG. 1. P16 formulated weighting vectors (red lines) are com-

pared with the new weighting vectors (black lines) for a single

observation of variable 20. The figure shows cases using (a) sy 5 1,

(b) sy 5 0:2, and (c) sy 5 0:02 to demonstrate the shape depen-

dence on likelihood sums (denoted by ‘‘norm’’ at the top of plots).
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exponential function (i.e., a Gaussian) for observation

errors, which is common practice for data assimilation

in geophysics.

In addition to reducing the control a user has over

the influence of localization on particle weights, as

demonstrated in Fig. 1, the P16 weight formulation

makes the local PF prone to round-off error. More no-

tably, the filter performs suboptimally when many ob-

servations are located in the neighborhood of a given

grid point, causing the normalization to be a product

of several low likelihood values. The small numbers

resulting from this product can lead to spurious devia-

tions from the smooth transitions of weights provided

by the localization function and cause the local PF

to fail for large applications (not shown). Following this

realization, we introduce a modification to the origi-

nal weight calculations that eliminates the negative

consequences of assimilating accurate measurements.

The new approach localizes the PF in a manner that is

more consistent with preexisting serial EnKFs, such as

the ensemble square root filter (Whitaker and Hamill

2002) and the ensemble adjustment Kalman filter

(Anderson 2001).

For a single observation, serial EnKFs update each

element of the posterior mean xaj by adding a correction

to the prior mean xj
f :

xaj 5 x
f
j 1 l(y, x

j
, r

loc
)Dx

j
. (6)

In (6), Dxj is the correction for the jth state variable

coming from the Kalman filter update equations. This

correction is damped by a localization coefficient, so that

only variables with a nonzero l(y, xj, rloc) receive an

update. For the PF calculation of the mean, (6) can be

written

xaj 5
1

N
e

�
Ne

n51

x
n,j
1 l(y, x

j
, r

loc
)

"
�
Ne

n51

ŵ
n
x
n,j
2

1

N
e

�
Ne

n51

x
n,j

#
,

(7)

where x
f
j is replaced by the prior sample mean, Dxj

is expressed as the difference between the nonlocalized

PF posterior mean and the prior mean. In (7), the non-

localized posterior mean estimate comes directly from

(3), which can approximate posterior expected values

for any measurable function, f (x):

f (x)5

ð
f (x)p(xjy) dx ,

’ �
Ne

n51

ŵ
n
f (x

n
) . (8)

In the above expressions, the weights ŵn are the nor-

malized likelihoods calculated for the observation:

ŵ
n
5

p(yjx
n
)

�
Ne

m51

p(yjx
m
)

. (9)

To find the vector weights that satisfy this type of lo-

calization, we set the right-hand side of (7) to a vector

weighted sum of prior particles and solve for these

weights. After simplification, the weight equation for

each element becomes

v
n,j
5

(N
e
ŵ

n
2 1)l(y, x

j
, r

loc
)1 1

N
e

, (10)

which generalizes for multiple observations to

v
n,j
5P

Ny

i51

(N
e
ŵ

(yi)
n 21)l(y

i
, x

j
, r

loc
)1 1

N
e

24 35, (11)

where ŵ(yi)
n 5 p(yijxn)/

h
�Ne

m51p(yijxm)
i
.

When we repeat the single-observation experiments

described above, the new weighting vectors (black lines

in Fig. 1) exhibit a broader structure than the previous

weight formulation, but maintain the same shape re-

gardless of the likelihoods. From (10) it is clear that the

weighting vectors are proportional to the specified

function l with the added offset 1/Ne. The major differ-

ence between the two weight formulations in (5) and

(11), is (11) normalizes likelihoods before using them to

form the vector weights. This step keeps all elements of

V close to constant, thus forcing the weights to be in-

dependent of the magnitude of likelihoods. The revised

weight formulation also alleviates computational issues

related to round off errors. To further reduce round off

errors, (11) can be normalized after each yi in the

product to yield the same result as normalizing the full

product, which we find to be necessary when assimilat-

ing large networks of dense observations.

b. Reformulation of update equations

The local PF described in P16 uses (5) to derive a set

of equations needed to update particles. Therefore,

revisions to the particle update equations must follow

any modifications to the vector weight equation. For

the ith observation in sequence, the local PF con-

siders the original set of prior particles not updated by

observations at the current time, fx1, . . . , xNe
g, and

the set of particles updated by all observations in

(y1 y2 � � � yi21)
T at the current time, which we denote

by fx(y1:i21)
1 , . . . , x

(y1:i21)
Ne

g. The local PF first samples
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particles with replacement from fx(y1:i21)
1 , . . . , x

(y1:i21)
Ne

g,
using the scalar weights:

~w
(y1:i)
n 5

p(y
i
jx(y1:i)n )

�
Ne

m51

p(yjx(y1:i)m )

. (12)

This process follows the same bootstrap resampling

step used by standard PF methods, which considers

the likelihood of each particle in the set fx(y1:i21)
1 , . . . ,

x
(y1:i21)
Ne

g to determine the sampling. The sampled particles

are then merged with this set to form localized posterior

particles:

x
(y1:i)
n,j 5 x

(y1:i)
j 1 r

1,j
x
(y1:i21)
kn ,j

2 x
(y1:i)
j

� �
1 r

2,j
x
(y1:i21)
n,j 2 x

(y1:i)
j

� �
.

(13)

Here, kn is the index of each sampled particle, x
(y1:i)
j is

the mean conditioned on (y1 y2 � � � yi)T, and r1,j and

r2,j determine how to merge the sampled particles

with current particles. The coefficients used for the

merging are stored in vectors r1 and r2, and specified

to satisfy the SIR PF solution near the current ob-

servation and the prior solution where localization

coefficients are zero. Everywhere else in state space,

the local PF satisfies the posterior mean, x(y1:i), and

the trace of the posterior covariance, s(y1:i)2, calcu-

lated from fv(y1:i)
1 , . . . , v

(y1:i)
Ne

g and fx1, . . . , xNe
g, where

each v(y1:i)
n reflects the likelihood of the original set

of prior particles given (y1 y2 � � � yi)T. Therefore, co-
efficients derived for the update step reflect: 1) pos-

terior calculations made independently of random

sampling performed during serial processing of mea-

surements [i.e., through x(y1:i) and s(y1:i)2]; and 2) the

posterior particles resulting from bootstrap resampling

near observations in state space. The derivation for r1
and r2, which is provided in the appendix of P16, yields

the following set of equations for each element of the

vectors:

r
1,j
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
(y1:i)2
j

1

N
e
2 1

�
Ne

n51

x
(y1:i21)
kn ,j

2x
(y1:i)
j 1 c

j
x
(y1:i21)
n,j 2x

(y1:i)
j

� �h i2
vuuuuut ,

(14)

r
2,j
5 c

j
r
1,j
. (15)

Expressions for both coefficients contain the term cj,

which depends on the choice of vector weight formula-

tion used to localize the impact of observations. For the

P16 weight formulation given by (5),

c
j
5

N
e
(12 l[x

j
, y

i
, r

loc
])

l[x
j
, y

i
, r

loc
]�
Ne

m51

p(y
i
jx

m
)

. (16)

As l[xj, yi, rloc]/ 0, P16 shows that r1,j / 0 and r2,j / 1.

Equation (16), however, contains�Ne

m51p(yijxm) in the de-

nominator, which can cause the filter to be unstable

when an observation yields very small likelihoods for

all particles. This potential source of numerical insta-

bility follows from the weight formulation chosen in

P16. Modifications to the vector weight equations

have a direct effect on cj alone, which we discuss in the

remaining parts of this subsection.

The expression for cj is derived in P16 after a simpli-

fication of its original form, given by

c
j
5

x
(y1:i)
j 2ex(y1:i)j

x
(y1:i21)
j 2x

(y1:i)
j

, (17)

where ex(y1:i)j is the posterior mean resulting from not

localizing the impact of the current observation. As

before, we approximate this mean with a weighted sum

of particles. In this case, each vector weight is propor-

tional to the product of the normalized likelihood for

yi, and the localized vector weights from previous ob-

servations in the sequence:

ex(y1:i)j ’ �
Ne

n51

ŵ
(yi)
n v

(y1:i21)
n,j

V̂
(y1:i)
j

x
n,j
. (18)

A new expression for cj is then given by

c
j
5

�
Ne

n51

v
(y1:i)
n,j

V
(y1: i)
j

x
n,j
2 �

Ne

n51

ŵ(yi)
n v

(y1:i21)
n,j

V̂
(y1:i)
j

x
n,j

�
Ne

n51

v
(y1:i21)
n,j

V
(y1: i21)
j

x
n,j
2 �

Ne

n51

v
(y1:i)
n,j

V
(y1: i)
j

x
n,j

,

5

�
Ne

n51

 
v
(y1:i)
n,j

V
(y1: i)
j

2
ŵ(yi)

n v
(y1:i21)
n,j

V̂
(y1: i)
j

1Ax
n,j

�
Ne

n51

 
v
(y1:i21)
n,j

V
(y1:i21)
j

2
v
(y1:i)
n,j

V
(y1:i)
j

1Ax
n,j

, (19)

where V(y1:i)
j normalizes v

(y1:i)
n,j and V̂(y1:i)

j normalizes

ŵ(yi)
n v

(y1:i21)
n,j . An important difference between this for-

mulation and the P16 formulation [see Eq. (A6) of P16]

is that (19) expresses each mean using weighted sums of

fx1, . . . , xNe
g instead of fx(y1:i21)

1 , . . . , x
(y1:i21)
Ne

g. The re-

vised calculations of cj no longer rely on past updates
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made to particles when assimilating (y1 y2 � � � yi21)
T in

the sequence, thus improving the accuracy of this

formulation over the one outlined in P16. This form of

cj is feasible because (11) uses normalized scalar

weights ŵ(yi)
n , instead of the observation likelihoods

directly in the vector weight calculations. As a result,

the number of variables in (19) can be reduced by

writing

v
(y1:i)
n,j 5v

(y1:i21)
n,j

(N
e
ŵ

(yi)
n 21)l(y

i
, x

j
, r

loc
)1 1

N
e

24 35. (20)

In this form, cj depends only on weights updated by

previous observations in the sequence, the current

likelihoods, and the localization coefficients used for yi.

This subtle difference from the P16 formulation also

meansV(y1:i)
j can be written as a function of V̂(y1:i)

j , which

further simplifies the expression. Using (20) and re-

alizing that each term in the denominator of (19) divides

each term in the numerator to yield the same constant

for all n, cj reduces to

c
j
5

12 l(y
i
, x

j
, r

loc
)

V̂
(y1:i)
j N

e
l(y

i
, x

j
, r

loc
)
, (21)

which requires calculating only V̂(y1:i)
j to update cj

for each observation during data assimilation. In ad-

dition to being more accurate, the new formulation

is more stable than (16) because the denominator of

(21) is less likely to approach zero in the neighborhood

of observations.

c. Probability mapping step

The probability mapping step of the local PF pro-

vides additional correction when a mismatch exists be-

tween the weights and posterior particles resulting

from sampling and merging steps. This procedure helps

compensate for the fact that the local PF satisfies the

SIR solution near observations, but considers only the

first two moments outside this region. We perform this

step independently for each state variable by mapping

particles into kernel-estimated marginal probability

distributions calculated using prior particles and their

weights. As shown in P16, this step provides little

benefit when prior errors are close to Gaussian, but

improves filtering results when large deviations from

Gaussianity occur.

The general strategy focuses on matching quantiles of

an input distribution g(x) with quantiles of some target

distribution q(x). For the local PF, we use particles re-

sulting from the sampling and merging steps as input

particles for the probability mapping. For simplicity,

refer to fx1, . . . , xNe
g and f~x1, . . . , ~xNe

g as sets of scalar

particles before and after the mapping.

The mapping performs an inverse of the target cu-

mulative density function (cdf) at each particle quantile

to sample from the desired distribution:

~x
n
5Q21[G(x

n
)] . (22)

Here, G(x) and Q(x) are the initial and target cdfs, re-

spectively. As in McGinnis et al. (2015), we represent

g(x) and q(x) nonparametrically with

g(x)5
1

N
e

�
Ne

m51

K(x
m
, b

m
), (23)

q(x)5 �
Ne

m51

w
m
K(x̂

m
,b

m
), (24)

where K(xm, bm) is a Gaussian kernel centered on

themth input particle xm with a standard deviation or

‘‘bandwidth’’ of bm and wmK(x̂m, bm) is a weighted

kernel centered on the nth original prior particle, denoted

x̂m. The kernel-estimated g(x) and q(x) are then integrated

numerically over a specified domain to estimate cdfs. In

the current study, we adopt a less arduous approach, which

estimates quantiles directly as sums of Gaussian cdfs. At

the input particle locations, we calculate quantiles using

G(x
n
)5

1

2N
e

�
Ne

m51

"
11 erf

 
x
n
2 x

mffiffiffi
2

p
b
m

!#
, (25)

which is derived from integrating the sum of Gaussian

kernels in (24). Likewise, we estimate the target cdf

using

Q(x)5
1

2
�
Ne

n51

w
n

"
11 erf

 
x2 x̂

mffiffiffi
2

p
b
n

!#
, (26)

where x is a domain defined by the set of evenly spaced

points between xmin and xmax.We then estimate the inverse

of (26) at each quantile by interpolating Q(x) to each

G(xn), which provides the adjusted posterior particles,

f~x1, . . . , ~xNe
g. For these experiments, we set xmin (xmax)

to be the minimum (maximum) particle value minus

(plus) twice the difference between the maximum and

minimum particle values, and use 500 points between xmin

and xmax. The domain grid spacing [i.e., (xmax 2 xmin)/500]

is small enough to ensure no systematic decrease in filter

accuracy occurs due to interpolation errors. We arrived

at this configuration after performing multiple nu-

merical experiments with increasingly more grid points

for the domain (not shown).
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The probability mapping preserves relationships

across state variables, despite being performed inde-

pendently for each element of x. A part of this result

comes from multivariate information being passed

through the spatially smooth weights used to define the

target cdfs during the mapping.We also find it necessary

to use a constant bandwidth for all Gaussian kernels

used in the cdf estimates to preserve this property. For

experiments shown in this study, we set each bandwidth

equal to the sample standard deviation of fx1, . . . , xNe
g

for all bn used in the calculation of G and Q.

4. Improved PF inflation methodologies

Monte Carlo filters can grossly underestimate uncer-

tainty whenNe is small and when errors in the dynamical

model are quantified inaccurately or ignored (Moritz

and Sutera 1981; Buizza et al. 1993; Houtekamer et al.

1996; Anderson and Anderson 1999; Poterjoy et al.

2014). These problems can be reduced, but not fully

solved, by localization strategies. For example, EnKFs

typically rely on heuristic methods for inflating prior or

posterior error variance when ensemble error statistics

underestimate root-mean-square errors (RMSEs) av-

eraged over many sequential data assimilation cycles.

This inflation can take several forms, such as multiplying

ensemble perturbations by a factor greater than unity

(Anderson and Anderson 1999), adding noise to sam-

ples (Houtekamer and Mitchell 2005), or relaxing a

portion of the posterior sample update back to the prior

sample (Zhang et al. 2004; Whitaker and Hamill 2012).

Inflating the sample variance in a similar manner is

nontrivial in a PF framework, since no parametric form

is assumed for these errors. These strategies are also not

guaranteed to prevent weights from collapsing onto a

single particle when assimilating dense networks of ac-

curate observations.

Previous studies (i.e., P16, PA16, and PSA17)

enforce a minimum bound on likelihood calculations

to make the local PF resilient to weight collapse. To

implement this strategy, the localization function is

multiplied by a scalar coefficient a, which is less than one

and forces particle weights to be more uniform. Because

the goal of this coefficient is to prevent spurious re-

duction in the posterior sample variance after resam-

pling, we call this method ‘‘a inflation.’’ For a univariate

problem, this approach leads to a weight calculation of

the following form:

w
n
5 [p(yjx

n
)21]a1 1: (27)

As discussed in PA16, (27) has a minimum value of

12a, which stabilizes the filter when localization alone

is insufficient for preventing weight collapse with small

samples. The a inflation strategy, however, is not ef-

fective when estimated observation errors are much

smaller than prior errors; Lee and Majda (2016) dem-

onstrate this deficiency using experiments with sparse,

accurate observations. In this case, the probability of

prior particles yielding likelihoods greater than 12a is

low, causing the filter to assign near equal weights to

each particle. Therefore, the method begins ignoring

observations when their accuracy increases. This de-

ficiency motivates the use of a different filter stabiliza-

tion strategy for small samples, which we introduce here.

Like the previous technique, the new method acts to

reduce the impact of observations that collapse particle

weights if left untreated. Instead of enforcing a mini-

mum value for likelihood calculations, we increase the

assigned observation error variances by a factor b. For

this study, we choose b based on a metric that is in-

versely proportional to the variance in particle weights

called ‘‘effective sample size,’’ defined byNeff 5
�
�w2

n

�21
(Liu and Chen 1998). The new method, which we refer

to as ‘‘b inflation,’’ assumes posterior calculations made

using small Neff are prone to sampling error, so the

benefits of maintaining Neff . 1 outweigh the negative

impact of artificially increasing the error variance as-

signed to potentially accurate measurements. This

strategy follows similar approaches that perform a

sampling error correction based onNeff (e.g., Penny and

Miyoshi 2016).

The inflation scheme also helps stabilize the filter

when a mismatch exists between physical processes

captured by observations and processes represented by

numerical models, or when a persistent bias exists in the

model or measurement operators. To cope with this

issue, a number of past studies introduce adaptive ob-

servation error inflation methods (Geer and Bauer 2011;

Okamoto et al. 2014; Zhu et al. 2016; Minamide and

Zhang 2017), which emphasize the importance of non-

stationary error statistics for observations measuring

complex physical processes, such as all-sky radiance

measurements. These studies formulate schemes for

variational and Kalman filtering methods in a manner

that is effective for a Gaussian data assimilation

framework. Strategies of this type, however, are not al-

ways appropriate for PFs. For example, a single accurate

observation can collapse the SIR PF when provided

with a relatively small prior sample. Presented with

the same data assimilation problem, an EnKF would

produce a posterior sample containing a reasonably

accurate mean with nonzero variance.

For the SIR PF, drawing samples from an appropriate

proposal density is one solution for improving filter

stability for small samples (e.g., Chorin et al. 2010;
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Morzfeld et al. 2018). Unfortunately, constructing this

density can be quite difficult for complex non-Gaussian

applications, such as the convective-scale forecasting

system presented later in this manuscript. Other ap-

proaches for improving filter stability include regulari-

zation (e.g., Casarin and Marin 2009), additive noise

(e.g., Penny and Miyoshi 2016), and using an EnKF for

assimilating observations that would lead to weight

collapse (Lee and Majda 2016). In this study, we choose

to inflate observation error variance based on Neff to

stabilize the filter, which amounts to a smaller local PF

correction during data assimilation. The new algorithm

operates only whenNeff falls below a target value ofNt
eff.

For example, an observation with error drawn from a

Gaussian would yieldwn } expf2[y2H(xn)]
2/2ŝ2

yg, where
ŝ2
y 5bs2

y. The method requires finding b so that the

target Neff is reached:

Nt
eff 5

 
�
Ne

n51

exp

(
2[y2H(x

n
)]2

2bs2
y

)!2

3

 
�
Ne

n51

exp

(
2[y2H(x

n
)]2

bs2
y

)!21
. (28)

This inflation mechanism serves a similar purpose as

a inflation; that is, it prevents weights from collapsing

to a single particle under the circumstances described

above. Unlike a inflation, the new approach does not

completely neglect observations when all likelihoods are

very small.

a. Univariate demonstration

The relative merits of b inflation and a inflation can

be inferred easily from numerical simulations. For this

purpose, we perform experiments estimating the pos-

terior mean and variance for a univariate random vari-

able x, conditioned on a noisy measurement y. We first

draw samples fx1, . . . , xNe
g and a true state xt from a

prior distribution N(0, 1), and simulate y by adding an

error drawn from N(0, s2
y) to xt. We choose sy 5 0:2

so that the variance in prior particles is much larger

than the estimated observation error variance, thus in-

creasing the probability of particle weights collapsing

to a single particle for small Ne. Each experiment uses

the SIR PF to assimilate y using the two stability

methods described above, with a coefficients from 0.9–

1.0 and b coefficients from 1.0–16.0. These ranges

cover a large enough portion of the parameter space to

provide optimal results under a variety of circumstances.

We perform these experiments 104 times to accumulate

samples for calculating mean RMSE and sample stan-

dard deviation (spread) statistics for each data assimi-

lation configuration.

We summarize the results in Fig. 2 by plotting av-

erage RMSEs and ratios of spread to RMSE (left

panels) as a function of a and b. In this figure, the

ordinate values reflect increasing impact of inflation

(i.e., decreasing a and increasing b), with the origin

reflecting no inflation.We also plot the ratioNeff/Ne for

each stability parameter (right panels in Fig. 2) to show

how a and b impact Neff for a given Ne. For the uni-

variate Gaussian data assimilation problem, we can

designate a ‘‘target inflation’’ as the a or b yielding an

average spread to RMSE ratio of unity; coefficients

producing this result are indicated by 3s in the figure.

As demonstrated by the simulations, the two param-

eters can be tuned so the posterior variance matches

the corresponding posterior mean RMSEs, and the

target inflation decreases as Ne increases (values are

shown for Ne 5 10, 20, 40, and 80). Both methods also

have the expected property that modifying the likeli-

hood calculations to prevent weight collapse increases

the average RMSEs of the data assimilation experi-

ments, in which case, we find b inflation to be a more

effective strategy for maintaining filter stability be-

cause it provides the lowest RMSEs for target inflation

values. Posterior RMSEs also exhibit less sensitivity to

b, compared to a, demonstrating that choosing a sub-

optimal value for this parameter is less likely to in-

crease errors in the mean.

Repeating the experiments with a smaller observa-

tion error of sy 5 0:02 shows even larger differences

between the two strategies. In this case, a inflation

becomes far less effective than b inflation for main-

taining variance in the posterior particles without large

increases in RMSEs (Fig. 3). The target b in each

configuration also corresponds to a Neff/Ne that is

comparable to the values found in experiments for

sy 5 0:2. This result motivates our choice of using Neff

to tune the inflation for real applications, where mea-

surements come from diverse observing networks with

heterogeneous accuracy and sparsity. In addition, the

results in Figs. 2 and 3 show that the relationship be-

tween b and Neff/Ne is relatively independent of the

sample size used, thus making it easier to specify a

threshold value for Neff.

b. Multivariate b inflation

For systems of multiple spatial dimensions and mul-

tiple observations, the collapse of particle weights at the

location of a model variable can be caused by assimi-

lating one or more distant observations. Provided with

a network of observations located at different geo-

graphical locations, one strategy is to find the vector

of inflation coefficients b of length Ny, which gives

Neff $Nt
eff for weights calculated at each observation
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location. This problem is trivial to solve when observa-

tions reflect independent portions of the state space, but

the solution is no longer unique when one or more de-

pendent variables are observed. In the latter case,

finding a b that satisfies this criteria also requires solving

numerically for the set of inflation coefficients, since the

normalization of weights and inclusion of localization

complicates any analytical solutions to this problem.

This process would require solving (28) multiple times

for each bi, which is computationally prohibitive for

large data assimilation problems.

An effective heuristic approach is to solve (28) once

for each observation to obtain the set f~b1, . . . , ~bNy
g,

then propagate the inflation values spatially using

b
i
5 11 �

Ny

k51

(~b
k
2 1)l(y

i
, y

k
, r

loc
), (29)

where the localization function l(yi, yk, rloc) determines

the impact of each ~bk value in the calculation of bi. This

method constructs each bi by aggregating coefficients

from nearby observations to determine the inflation

needed for preventing weight collapse. As a result, the

inflation passes the task of stabilizing the filter to

multiple sources, which we find to be an effective strat-

egy for dense networks of accurate observations.

c. Filter degeneracy during resampling

The P16 local PF processes observations serially to

produce posterior samples that reflect the localized

particle weights. Because a resampling step is necessary

for each independent observation in y, successive sam-

pling steps performed for closely spaced observations

can lead to filter degeneracy faster than if they were

assimilated at once. One solution is to assimilate these

observations in batches, which is a straightforward op-

tion when provided with measurements located in close

proximity to each other. For example, measurements of

reflectivity and radial velocity can be assimilated si-

multaneously in weather models. This strategy also sig-

nificantly reduces the computational cost of the local PF

for dense observation networks and provides a means of

assimilating observations with correlated errors.

The a inflation strategy adopted in previous studies

provides another mechanism for reducing issues related

to the serial processing of observations. In addition to

preventing weight collapse, this method reduces part of

the update formed by merging particles together for

FIG. 2. Two filter stability techniques compared for a univariate application assimilating an observation with

errorsy 5 0:2 forNe 5 10 (black),Ne 5 20 (red),Ne 5 40 (blue), andNe 5 80 (magenta). (a),(c) RMSEs (solid lines)

and ratios of sample standard deviation to RMSE as a function of stability coefficient (dashed lines) for (top)

a inflation and (bottom) b inflation. (b),(d) The ratio of Neff to Ne as a function of inflation coefficient for each

configuration.
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each observation, thus allowing more diversity in

particles at observation locations. We maintain this

strategy in the revised local PF by introducing a mixing

parameter similar to what is used in Zhang et al. (2004)

for EnKFs, which operates on the update coefficients

r1 and r2:

r
1
/ gr

1
, (30)

r
2
/g(r

2
2 1)1 1: (31)

The coefficient, g is a scalar between 0 and 1, which

forces the local PF to update particles using combi-

nations of the current particles and resampled parti-

cles everywhere in state space, including at the

location of observations. Following this modification

of r1 and r2, we center and scale posterior particles

resulting from (13) to match x(y1:i) and s(y1:i), so suc-

cessive assimilation steps follow assumptions made in

deriving the update equations presented in section 3a.

For small Ne, setting g, 1 is useful for reducing filter

degeneracy due to sampling errors in the serial pro-

cessing of observations, but setting g5 1 is more ap-

propriate for moderate to large Ne.

5. 40-variable Lorenz (1996) application

In this section, we evaluate updates made to the

local PF algorithm using a set of data assimilation

experiments with the Lorenz (1996) model (hereafter

L96). The dynamical system consists ofNx540 variables

evolved in time using the differential equations,

dx
i

dt
5 (x

i11
2 x

i22
)x

i21
2 x

i
1F , (32)

with F5 8, and cyclic boundaries: xi1Nx
5 xi and xi2Nx

5 xi.

We integrate (32) forward numerically using the

fourth-order Runge–Kutta method with a time step of

0.05 time units. For the initial set of experiments,

we create a sparse network of Ny510 observations,

simulated every 0.05 time units on every fourth model

grid point, by selecting values from a truth simula-

tion and adding uncorrelated Gaussian errors selected

from N(0, s2
yI). The test problem is similar to the setup

described in sections 4a and 4b of P16, except we use

half the number of measurements and space them

equally across the domain. From this application, we

can form a set of data assimilation problems that pres-

ent little difficulty for most filtering techniques, like

EnKFs, but reproduce known challenges for the P16

formulation of the local PF. We compare the local PF

performance with a and b inflation using a fixed sam-

ple size of Ne 5 40, and decreasing values of observa-

tion error standard deviations: sy 5 1, sy 5 0:2, and

sy 5 0:02. The objective is to test the new inflation

and weight formulations for a set of problems that

are increasingly more difficult for the previous filter

FIG. 3. As in Fig. 2, but for sy 5 0:02.
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configuration (i.e., sparse, but accurate observation

networks). The experiments constructed here are simi-

lar to those performed by Lee and Majda (2016), which

demonstrate deficiencies in previous formulations of the

local PF (see their Fig. 2).

Figure 4 shows posterior mean RMSEs and ensemble

standard deviation averaged over all state variables ev-

ery data assimilation cycle for 1000 cycles using a and

b inflation. For these comparisons, we use the same local

PF weight formulation as P16 to evaluate the two sta-

bility mechanisms, which we label ‘‘a inflation’’ and

‘‘b inflation’’ in Fig. 4. We also include a third case using

b inflation with the new weight formulation described

in section 3a, which is labeled ‘‘new weights.’’ Results

shown in this figure reflect configurations of the local PF

tuned to provide the lowest posterior RMSEs when

averaged over 1000 cycles. In the a inflation case, we use

a5 0:99 for the sy 5 1 experiment, but find the method

to be ineffective for sy 5 0:2 and sy 5 0:02, regardless

of the choice for a. For the second two b inflation cases,

we use fixed values of Nt
eff 5 8 and g5 0:5 for all three

observation errors. We also use the same localization

length of rloc 5 5 for the two experiments with the P16

weight formulation, but find the new weight formula-

tion to provide the best results when rloc 5 3:6. As shown

in Fig. 1, the newweight formulation produces a broader

update than the P16 formulation when providedwith the

same localization function, thus demonstrating why a

smaller rloc is necessary for this experiment.

The three configurations provide comparable skill

when sy 5 1 (Fig. 4a). This result occurs because the

data assimilation application does not produce a situa-

tion that reveals the weaknesses of a inflation and

the P16 weight formulation. When we decrease sy to

0.2, a inflation no longer provides an effective strategy

for preventing filter divergence (Fig. 4b), because

the probability of producing one or more particles

from regions with high likelihood becomes very small.

The b inflation experiment takes several cycles to begin

converging to the truth, but eventually produces steady

filtering results with mean posterior RMSEs below the

observation error (indicated by the dashed lines in

Fig. 4). With the new weight formulation, the local

PF begins converging to the truth after the first cycle,

likely because the normalization of likelihoods no lon-

ger affects the spread of information in the localization

region, as described in section 3a. Setting sy 5 0:02

further slows convergence for the b inflation case, while

having no negative impact on the experiment using the

new weight formulation (Fig. 4c).

The results shown in Fig. 4 suggest that the filter can

benefit substantially from the new weight formulation

and from adaptively broadening the high likelihood

region until particle weights maintain a threshold ef-

fective sample size. To perform a more rigorous test of

this hypothesis, we carried out a larger set of sensitivity

experiments using different observation networks

for the L96 model. The observation networks consist

of Ny 5 40, 20, and 10 equally spaced measurements—

each collected at periods of 0.05, 0.1, and 0.2 time units

(totaling 9 sets of measurements). The observations

contain random errors sampled from N(0, s2
yI) with

sy 5 0:2, which is similar to the second case described

above. We first perform a thorough tuning of each

filter to identify values of localization and inflation

yielding the lowest time- and domain-averaged pos-

terior RMSEs for each observation network, then run

each configuration for 5200 cycles (observation times),

using the first 200 for spin up. Average RMSEs and

spread resulting from the last 5000 cycles are summa-

rized in Fig. 5.

The results in Fig. 5 confirm some of the findings

discussed in the first set of experiments, where a pro-

gressively more accurate observation network yields a

sudden decline in filter accuracy for the original P16

filter configuration. These experiments test a similar

FIG. 4. Domain mean posterior RMSEs (thick solid lines) and spread (thick dashed lines) from experiments performed with the L96

model using observation errors of (a) sy 5 1, (b) sy 5 0:2, and (c) sy 5 0:02. Values are plotted on a log scale for each data assimilation

cycle to compare a inflation (red), b inflation (blue), and b inflation with new weight formulation (black). For reference, the thin dashed

line indicates the observation error used for each experiment.
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range of regimes, where the ratio of domain-average

prior errors to measurement errors changes significantly

over the nine sets of observation networks. All three

configurations provide comparable RMSEs for the

dense networks (i.e., Ny 5 40), but the experiments

demonstrate large discrepancies when fewer measure-

ments are available to constrain the solution.

To further explore the behavior of each PF configu-

ration, we carry out a rank histogram verification of

the experiments performed with the sparsest observa-

tion network; that is, Ny 5 10 with an observation

period of 0.2 time units. The verification tallies the

number of instances the true model state lands in bins

formed by ranking posterior particles in ascending

order (Anderson 1996; Hamill and Colucci 1996;

Talagrand et al. 1997). Figure 6 shows rank histograms

calculated for the first and third variables of the L96

model (i.e., x1 and x3) over the 5000 cycles to demon-

strate differences in posterior statistics for observed

and nonobserved variables. The negative effects of

a inflation are illustrated well by Fig. 6a. In addition to

producing posterior samples of x1 that are often over-

dispersed (indicated by an elevated frequency in the

histogram center), the method frequently causes the

local PF to lose track of the true solution (indicated

by large frequency in the histogram edges for both

Figs. 6a and 6d). The outcome is consistent with the

low RMSEs calculated for this configuration (Fig. 5c).

While b inflation reduces some of the deficiencies oc-

curring in the a inflation experiments – regarding over

dispersion – the true solution also lands outside the

span of the particles too frequently for both x1 and x3
(Figs. 6b,e). The experiment performed with b inflation

and the new weight configuration, however, yields rel-

atively flat histograms for both variables, thus showing

no obvious shortcomings in the probabilistic represen-

tation of the two variables. Therefore, the algorithmic

changes introduced in section 3 are anticipated to yield

benefits for real geophysical data assimilation problems,

where dense networks of observations are not always

available for constraining the most important dynamical

processes.

6. Real weather application

The algorithmic changes introduced in this study are

partially motivated by recent tests of the local PF for

forecasting convective-scale weather events. In this

section, we briefly describe results from a set of experi-

ments demonstrating how each change affects the per-

formance of the local PF for a real application. These

tests use NSSL’s Experimental Warn-on-forecast Sys-

tem for ensembles (NEWS-e) framework, which is a

convective-scale ensemble analysis and prediction sys-

tem developed to investigate whether the frequent as-

similation of measurements for high-resolution weather

models can eventually augment severe thunderstorm

and tornado warnings (Stensrud et al. 2009, 2013). The

NEWS-e system also acts as a test bed for implement-

ing new data assimilation and modeling strategies that

may eventually transition into future developments

for operational weather forecasting systems, such as

the NOAA High Resolution Rapid Refresh (HRRR;

Benjamin et al. 2016). For this purpose, scientists at

NSSL adopted an EnKF data assimilation system,

which provides the required balance between filter

FIG. 5. Time-averaged domain mean posterior RMSEs (solid

lines) and spread (dashed lines) for L96 experiments as a func-

tion of observation period using (a) Ny 5 40, (b) Ny 5 20, and

(c) Ny 5 10. Values are plotted on a log scale for a inflation (red),

b inflation (blue), and b inflation with new weight formulation

(black). The thin dashed line indicates the observation error

(sy 5 0:2).
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performance and computational efficiency needed for

weather forecasting on short (0–90min) time scales.

The NEWS-e system has been run experimentally

each May since 2015 to provide a real-time rapidly

updating ensemble of convective storm forecasts

(Wheatley et al. 2015; Jones et al. 2016; Lawson et al.

2018) during NOAA’s Hazardous Weather Testbed

experiment (see https://hwt.nssl.noaa.gov). This system

uses version 3.6.1 of the National Center for Atmo-

spheric Research (NCAR) Weather Research and

Forecasting (WRF) Model (Skamarock et al. 2008), and

the NCAR Data Assimilation Research Testbed

(DART) software package (Anderson et al. 2009) with

the ensemble adjustment Kalman filter (EAKF) intro-

duced by Anderson (2001). The ensemble is comprised

of 36 members, run at a convection-permitting 3-km

horizontal grid spacing with 51 vertical levels and a

model top at 15 hPa over a 750 km 3 750 km domain.

This domain is relocated each day to regions where se-

vere weather is expected. The NEWS-e EAKF assimi-

lates radar velocity and reflectivity, Oklahoma mesonet

observations, and cloud water path retrievals every

15min, starting from the 1800 UTC experimental

NOAA HRRR ensemble, and ending at 0300 UTC the

next day. Using this setup, the EAKF posterior initial-

izes 18-member ensemble forecasts every 30min during

select convective weather outbreaks over the western

plains of the United States. For additional details re-

garding theNEWS-e system, including the configuration

of the EAKF, we refer readers to Wheatley et al. (2015)

and Jones et al. (2016).

The local PF is included in the suite of data assimila-

tion methods available in DART, which allows for a

seamless transition from the EAKF to local PF in the

NEWS-e system. In this section, we briefly discuss ex-

periments testing the stability and accuracy of the re-

vised local PF algorithm with NEWS-e. These data

assimilation experiments focus on a single high-impact

event that produced several tornadoes over western

Kansas on 24May 2016. On this day, multiple convective

cells formed along a dryline late in the afternoon, before

organizing into a mesoscale convective system (MCS)

by early evening (Fig. 7). Figure 7 shows composite re-

flectivity observations at three times representative of

major changes in the MCS evolution, which are plotted

over the same domain used for data assimilation and

forecasting experiments.

As indicated by black markers in Fig. 7, a radar lo-

cated in Dodge City, Kansas, captured large portions of

the MCS’s upscale development from convective cells.

We calculate root-mean-square differences (RMSDs)

using the Dodge City radial velocity observations and

ensemble members projected into observation space

to verify predictions generated during cycling data as-

similation experiments. These predictions come from

18-member ensemble forecasts, run every 30min from

2230UTC 24May to 0300UTC 25May. The verification

period covers the full development of the MCS targeted

FIG. 6. Rank histograms generated for (a)–(c) variable 1 and (d)–(f) variable 3 for (left) a inflation, (middle) b inflation, and (right)

b inflation with new weight formulation, using Ny 5 10 and an observation period of 0.2.
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for the experiments, and provides a suitable sample of

model forecasts for testing whether changes made to the

local PF algorithm are appropriate for high-dimensional

geophysical applications, such as weather forecasting.

We take a spatial mean of these statistics, calculated

over the verifying region, and average the values over all

forecasts to quantify a mean time evolution of errors

over the life cycle of the event. The resulting verification

summarizes how each data assimilation configuration

affects predictions for the flow field in and around the

developing MCS at different forecast lead times.

When applied in the NEWS-e system, initial tests of

the P16 version of the local PF revealed several of the

weaknesses described above. The a inflation mecha-

nism, combined with the original weight formulation of

the local PF, produces a filter that is unable to maintain

adequate RMSE/spread statistics in the presence of

large biases in the model, measurement operators, and

observations. The configuration resulted in frequent low

likelihood calculations for all particles (see section 4)

and a tendency of the filter to ignore most observations

available during the experiment. These factors often

produced nonsmooth weights (see section 3), which

caused large imbalances in model initial conditions for

some particles, and the occasional failure of particle

model integrations between cycles. For these reasons,

we do not show results with this configuration. Only

after adopting the observation error inflation strategy

introduced in section 4b (b inflation), were we able to

achieve stable filtering results over the entire weather

event. For the experiments shown here, we estimate

b coefficients adaptively using an Nt
eff 5 0:2Ne and set

g5 0:5. We arrive at these parameters after performing

a limited number of sensitivity experiments with the

local PF, which are guided by results performed using

low-order models.

Figure 8 shows time series plots of radar wind RMSDs

and expected errors, which we calculate from 0–90-min

ensemble forecasts as described previously in this sec-

tion. The expected error is taken as the square root of

FIG. 7. Composite reflectivity every 5 dBZ at three times during the evolution of the mesoscale convective system targeted for data

assimilation experiments with the WRF model. The radial coverage of verifying observations from the Dodge City radar is indicated by

the black dots.

FIG. 8. Domain mean RMSDs to radar winds (solid lines) and expected observation-space

errors (dashed lines), averaged over WRF forecasts initialized during the verification period.

Values are plotted from the benchmark NEWS-e EAKF (gold), the local PF with b inflation

(red), the local PF with b inflation and new weight formulation (blue), and the local PF after

tuning (black).
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the sum of ensemble variance and observation error

variance at each observation location. In addition to

comparing different formulations of the local PF, we

provide results from the real-time EAKF system used

in NEWS-e. The EAKF has been tuned for severe

convective storm applications at NSSL, thus providing

an appropriate benchmark for testing whether the local

PF provides satisfactory filtering performance. Before

comparing RMSDs from each configuration, it is im-

portant to note that the EAKF and local PF forecasts

provide noticeable differences in expected forecast er-

ror. Ensemble forecasts verified in Fig. 8 consistently

underestimate the average prediction errors during

verification because of unresolved processes in the

forecast model and the small sample size used to esti-

mate this uncertainty. The local PF experiments, how-

ever, tend to provide larger expected errors than the

EAKF experiment, partly due to the use of b inflation.

While comparable observation error inflation tech-

niques exist for ensemble Kalman filters, we do not de-

viate from the EAKF configuration currently used by

the real-time NEWS-e system.

After performing the experiments, we find progres-

sive improvements in the local PF forecasts from three

different changes in configuration. First, we test the

P16 weight formulation with the current NEWS-e lo-

calization length scales, which are tuned for the EAKF.

This experiment produces the results plotted in red

(Fig. 8), which yield slightly larger forecast RMSDs

than the EAKF in gold. We then run an experiment

with the modified local PF weight equations described

in sections 3a and 3b, which produces the RMSDs

plotted in blue. This configuration results in forecast

errors that are comparable to the benchmark EAKF.

Finally, we tune the localization length scales in the

local PF to arrive at the black RMSDs. For several

observation networks, this tuning resulted in a 75%

reduction in the current rloc used by the EAKF. After

introducing these updates, the resulting forecasts pro-

duce smaller wind RMSDs than all other configura-

tions of the local PF, which further suggests the revised

local PF algorithm is appropriate for geophysical data

assimilation.

The verification shows the final configuration of the

local PF outperforming the benchmark EAKF experi-

ment in these tests. Though not shown here, we repeated

the EAKF experiments with the same reduced locali-

zation length scales used for the ‘‘tuned’’ configuration

of the local PF, but did not find a similar reduction in

RMSEs. Nevertheless, the limited number of cases used

in this demonstration does not provide enough evidence

to conclude the local PF performs better than the EAKF

for the given application. The results, however, suggest

that the revised filter operates effectively for complex

high-dimensional problems with small ensembles, and

can provide comparable results to current techniques

used for data assimilation in weather models.

7. Discussion and conclusions

This paper summarizes recent progress toward the

development of a Bayesian filter for data assimilation

in geophysics. The method discussed in this study is

the local particle filter (PF) of Poterjoy (2016), which

adopts sequential importance resampling techniques

from PFs (Gordon et al. 1993), and localization strate-

gies first used for ensemble Kalman filters (Houtekamer

and Mitchell 2001; Hamill and Whitaker 2001) to

construct a nonlinear filter that operates effectively

for applications with large spatial domains. Since

Poterjoy (2016), the local PF has been applied for a

hierarchy of dynamical systems, including multiple

high-dimensional geophysical models. In particular,

Poterjoy and Anderson (2016) compare the local PF

with deterministic and perturbed observation en-

semble Kalman filters for generating posterior rep-

resentations of baroclinic Rossby waves in a simplified

atmospheric general circulation model. Following this

study, Poterjoy et al. (2017) apply the local PF for an

idealized squall line in the Weather Research and

Forecasting (WRF) Model to examine its potential for

convective-scale data assimilation and forecasting. Fi-

nally, the analysis and prediction experiments presented

here within NSSL’s NEWS-e framework demonstrate

strong potential for applying the local PF for severe

convective storms in the future.

Numerical experiments performed up to this point

motivate several algorithmic improvements to the local

PF, including: 1) a new formulation of localized weights

and filter update equations; 2) a more efficient proba-

bility mapping procedure; and 3) new filter stabiliza-

tion methods for situations where localization is

insufficient for preventing particle weight collapse. We

use numerical simulations, ranging from a univariate

Gaussian problem to a real weather forecasting appli-

cation in the WRF model, to justify these improve-

ments. In general, the changes introduced in this study

improve the local PF’s stability in situations where

sample variance in prior particles is much larger than the

observation error variance and when unknown errors

exist in the model, observation operators, and estima-

tion of measurement uncertainty. These situations oc-

cur frequently in geophysical filtering problems, such as

convective-scale data assimilation for weather models,

and lead to round off errors in the original localized

weight formulation and failure of the filter stabilization
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technique used in past studies with the local PF

(Poterjoy 2016; Poterjoy and Anderson 2016; Poterjoy

et al. 2017). We also emphasize that the algorithmic

changes introduced in this study are applicable to other

PFmethods that may adopt a similar type of localization

strategy.

Real data tests performed with an experimental

convective-scale forecasting system at NOAA NSSL

demonstrate the potential of the updated local PF al-

gorithm for numerical weather prediction. Despite

using only 36 particles, forecasts generated from the

local PF are about as accurate as forecasts generated

from an EAKF system tuned over multiple seasons for

this application. Future research will focus on a more

thorough analysis of the local PF for convective-scale

forecasting and its comparison to the real-time EAKF

system run at NOAA NSSL. This research also pro-

vides additional incentive to explore large ensemble

simulations of severe convective storms using the local

PF, where higher-order posterior errors can be exam-

ined more faithfully.

Acknowledgments. Funding was provided by NOAA/

Office of Oceanic and Atmospheric Research under

NOAA–University of Oklahoma Cooperative Agree-

ment NA11OAR4320072, U.S. Department of Com-

merce. Parts of this research was also performed while

the first author held an National Research Council

Research Associateship award at the NOAA/Atlantic

Oceanographic and Atmospheric Laboratory. The first

author thanks Jason Sippel and Altug Aksoy for

providing comments that improved the clarity of the

manuscript.

APPENDIX A

List of Symbols Used in Manuscript

Symbol Description

x Model state vector

y Observation vector

Nx Length of model state vector

Ny Length of observation state vector

Ne Ensemble size

« Observation error

s2
y Observation error variance

x(y1:i) Posterior mean following assimilation of

[y1, . . . , yi]

s2
(y1:i)

Trace of model state error covariance

following assimilation of [y1, . . . , yi]

xn nth prior particle

x(y1:i)n nth particle following assimilation of

[y1, . . . , yi]

ŵ(yi)
n nth scalar weight calculated from p(yijxn)

~w(y1:i)
n nth scalar weight calculated from p(yijx(y1:i)n )

v(y1:i) Ne 3Nx matrix storing localized particle

weighting vectors in each row, following

assimilation of [y1, . . . , yi]

v(y1:i)
n nth row of v(y1:i)

V Normalization vector for rows of v

V̂ Normalization vector for rows of ŵv

l(yi, xj, rloc) Localization coefficient for model variable

xj during assimilation of yi
rloc Localization length scale parameter

r1 Weighting vector for sampled particles

r2 Weighting vector for prior particles

G(x) Input cdf for probability mapping

Q(x) Target cdf for probability mapping

bm Kernel bandwidth for mth particle

Neff Effective ensemble size

b Observation error inflation coefficient

g Mixing parameter

APPENDIX B

Local PF Algorithm

This appendix provides a pseudocode description

of the revised local PF for the case of Gaussian

observation errors. Modifying the algorithm for

other forms of observation error distributions re-

quires changing the observation error inflation and

weight calculation steps to match the desired error

distribution.

Algorithm 1 Local particle filter algorithm
Input: Initial weighting matrix v with ele-
ments vn,j 5 1/Ne for n5 1, . . . , Ne, j5 1, . . . , Nx,
prior ensemble fx1, . . . , xNe

g, observation vec-
tor y, observation error covariance matrix
with diagonal elements [s2

y1
, . . . , s2

yNe
], Nt

eff for
observation error inflation, localization
length scale rloc, mixing parameter g, CDF
domain for probability mapping xd, and kernel
bandwidth parameters fb1, . . . , bNe

g.
Observation error inflation coefficients for
observations with Gaussian errors
for i5 1:Ny do

b̂
i
5 argmin

b

24Nt
eff 2
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for k5 1:Ny do

b
k
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k
1 (b̂

i
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i
, y

k
, r

loc
)

end for
end for
Sequential assimilation loop
for i5 1:Ny do

Calculate scalar weights for Gaussian
likelihoods

for n5 1:Ne do

ŵ
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end for
Perform resampling

Draw Ne particles from x
(y1:i21)
1 , . . . , x

(y1:i21)
Ne

n o
according to the weights ~w

(y1:i)
1 , . . . , ~w

(y1:i)
Ne

n o
.

Assign indices k1, . . . , kNe
to sampled

particles.

for j5 1:Nx do
Calculate normalization needed for

update step

V̂
(y1:i)
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n51

ŵ
(yi)
n v

(y1:i21)
n,j

Calculate localized particle weights

for n5 1:Ne do
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Calculate weighted posterior mean and

variance
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Calculate vectors needed for particle
update
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Update particles
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end for
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Probability mapping
for j5 1:Nx do

Estimate posterior CDF

Q(x))
1

2
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Ne

n51
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(y1:i)
n,j

"
11 erf

 
x
d
2 x

n,jffiffiffi
2
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for n5 1:Ne do
Calculateparticlequantilesinkernel-

estimated prior CDF
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n,j 2 x

(yi)
m,jffiffiffi

2
p

b
m
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Interpolate to find particle located at

G(xn) in posterior CDF

x
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end for
end for
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